

KSK Mahanadi Power Company Limited

CIN No: U40300TG2009PLC064062

Registered Office

Near Nariyara Village, Akaltara Tehsil, Janjgir - Champa District,

Chhattisgarh Tel (Site): 07817-284001

8-2-293/82/A/431/A, Road No. 22, Jubilee Hills, Hyderabad - 500033.

Tel: +91-40-23559922-25, Tel: +91-40-23558701 Fax: +91-40-23559930

GSTIN-22AADCK6843W1ZB

Ref.: CECB, BTLAS/PPKN/2500108/692

Date: 22.05.2018

To

The Regional Officer, Chhattisgarh Environment Conservation Board, Vyapar Vihar, Near Pt. Deendayal Upadhyaya Park, Bilaspur, Chhattisgarh.

Sub: - Submission of Environment Statement in Form-V for FY 2017-18-Reg.

Ref: - i) Consent for Operation No. - 763/TS/CECB/2015 Dt. 22.05.2015

- ii) Environmental Clearance No. (Amendment & Extended of Validity)-13012/44/2008-IA.II (T) Dt.19.04.2018 & J-13012/44/2008-IA.II (T), Dt.19.10.2009
- iii) Rule 14 of Environmental (Protection) Rule, 1986

Sir,

Inviting your reference on the above mentioned subject, please find enclosed herewith the 'Environmental Statement in Form-V' duly filled under Rule-14 of the Environmental (Protection) Rules, 1986 for our Unit-1, 2 & 3 (3 x 600MW) in M/s KSK Mahanadi Power Company Limited for the Financial Year ending 31st March, 2018.

Submitted for your kind Perusal and records please.

Thanking You, Yours faithfully,

For KSK Mahanadi Power company Limited

(Authorized Signatory)

Copy to: i) The Member Secretary, CECB, Raipur, Chhattisgarh.

ii) The Addl. PCCF(C), MoEF &CC, Regional Office (WCZ), Nagpur, Maharashtra

Encl: Environmental Statement in Form-V- FY 2017-18.

ENVIRONMENTAL STATEMENT REPORT

OF

KSK Mahanadi Power Company Limited, Village- Nariyara, Tehsil- Akaltara District- Janjgir-Champa Chhattisgarh.

Unit#1, 2 & 3 (3 x 600MW)

For The Financial Year Ending 31st March 2018

Submitted to

The Regional Officer,
Chhattisgarh Environment Conservation Board,
Vyapar Vihar, Near Pt. Deendayal Upadhaya Park,
Bilaspur, Chhattisgarh-495001

FORM - V

(See Rule 14)

Environmental Statement Report for the financial year ending the 31st March, 2018.

PART-A

(i) Name and address of the : Mr. K.A Sastry, Director

Owner/Occupier of the Industry, M/s KSK Mahanadi Power Company Limited

Operation or process. Village- Nariyara, Tehsil-Akaltara,

District- Janjgir-Champa, Chhattisgarh

(ii) Industry Category : Red A Category

(iii) Production capacity : 3 x 600 MW

(iv) Year of Establishment : 16th Feb 2010

Commercial Operation Date 14th Aug 2013 (for **Unit No. #3**)

26th Aug 2014 (for **Unit No. #4**)

28th Feb 2018 (for **Unit No. #2**)

(v) Date of the last environmental : 1st September, 2017

Audit Report submitted

PART-B

Water and Raw Material Consumption

i) Water Consumption:

Raw Water	During the previous financial year 2016-17	During the Financial Year 2017-18
For production of DM plant water (m3)	0	0
For cooling water & miscellaneous (m3)	1,36,37,039	1,24,81,471
Potable water (m3)	1,64,058	2,30,579
Total	1,38,01,097	1,27,12,050

Name of the product:	Water consumption per unit of product				
Specificawater	During the previous FY 2016-17	During the FY 2017-18			
Specific water consumption (KL/MWH)	2.2	2.17			
consumption (KL/MWH)		Details enclosed as Annexure-I			
	Electricity generation				
Cross electricity	During the previous	During the Financial			
Gross electricity generated (MU)	Financial Year 2016-17	Year 2017-18			
generated (MO)	6702	5645			
		Details enclosed as Annexure-II			

ii) Raw Material consumption:

s.no	Name of raw	Name of products	Consumption of raw mater output (kg/Kwl	-
	materials.		During the previous FY 2016-17	During the FY 2017-18
1	Coal	Electricity	0.61	0.63
2	LDO/ HFO (Only during start up)		0.5	0.8

PART-C

Pollution Generated (Parameters as specified in the Consent issued)

Pollution discharged to Environment/ unit of output

(i) Pollutant Quantity of Percentage of Pollution variation from

Generated Prescribed Standards

a) Waste Water

Condenser Cooling Water

Parameters	Limit	Range of conc.	% age of variation
рН	6.5- 8.5	7.3-8.2	Within limits
Temp	<5 Deg C	22.8-29	Within limits
FA Chlorine	0.5 mg/L	<0.2	Within limits

Boiler Blow Down

Parameters	Limit	Range of conc.	% age of variation
Suspended solid	100mg/L	14-42	Within limits
Oil & Grease	20 mg/L	<1.0	Within limits
Copper	1 mg/L	<0.01	Within limits
Iron	1 mg/L	0.06-0.054	Within limits

Cooling Tower Blow Down

Parameters	Limit	Range of conc.	% age of variation
FA Chlorine	0.5 mg/L	<0.2	Within limits
Zinc	1.0 mg/L	0.09-0.41	Within limits
Chromium (T)	0.2 mg/L	<0.01	Within limits
Phosphate	5.0 mg/L	0.28-0.97	Within limits

b) Air

Stack emission	Stack emission characteristics				
Uni	t#3	Quantity	Average concentration	% Variation	
Parameters	Limit	Kg/hour	(mg/Nm3)		
Particulate Matter (PM)	50mg/Nm3	84.4	84.4 33.8		
Stack emission characteristics				n % Variation	
Unit#4		Quantity Kg/hour	Average concentration (mg/Nm3)		
Parameters	Limit				
Particulate Matter (PM)	50mg/Nm3	86.2	34.51	-30.98 %	
Uni	it-2	Quantity	Average concentration	% Variation	
Parameters Limit		Kg/hour	(mg/Nm3)	% variation	
Particulate Matter (PM)	30mg/Nm3	31.7	12.7	-57.6 %	

PART-D

Hazardous Wastes

(As specified under Hazardous Wastes (Management, Handling and Transboundary Movement Rules, 2008)

Hazardous Wastes	Total Quantity During the previous financial year (2016-17)	During the financial year (2017-18)		
(a) From Process Waste oil	Nil	Nil		
(b) From Pollution Control Facility.	Nil	Nil		
(c) Quantity recycled or re-utilized.	21.94 MT of Used Oil (Category no5.1) has been disposed to Authorized Recycler of Hazardous Waste.	to Authorized Recycler of		

PART-E Solid Wastes

	Total Qua	antity
	During the previous Financial year (2016-17)MT	During the current Financial year (2017-18)(MT)
a) From process Fly Ash	14,03,596.52	11,72,338
b) From Pollution Control facility	Nil	
c) Quantity recycled or re utilized i) Fly Ash **Given to cement industry and brick manufacturer.	11,50,195.62	10,36,719

PART-F

Please specify the characteristics in terms of composition and quantum of Hazardous waste as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Hazardous waste:

The generated used/spent oil is hydrocarbon in nature. **18 MT** of Used/spent oil (under category No.-5.1) is already disposed to authorized recycler of Hazardous Waste during this **FY 2017-18.**

Fly Ash and Bottom Ash:

At present, only Fly Ash & Bottom Ash as Solid Waste is being generated from current power plant operation activities. Fly ash is being collected & Stored at 3900m3 capacity Silo, thereafter pneumatically.

It is being transfer to Bulkers through the air tight telescopic chute use in Cement & Brick Manufacturing industry. Bottom Ash disposed to Ash Pond/dyke. 100% of the Ash Generated from plant operation is being utilized by dispatching to Cement Industry, Brick Manufactures & for Road Construction work. (Ash Dyke storage optimization) Details is enclosed as **Annexure-III.**

Data of Industrial Effluent Annexure- IV

Monthly Source Emissions Unit # 3 Annexure- V

Monthly Source Emissions Unit # 4 Annexure- V (A)

SUMMARY OF AMBIENT AIR QUALITY RESULTS (Inside Plant)

Annexure- VI

SUMMARY OF AMBIENT AIR QUALITY RESULTS (Outside Plant)

Annexure- VI (A)

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production:

- 1. Low Sulphur Coal is used for power generation: Enabling to lower the So2 Emission.
- 2. For Coal transportation through Train- Merry go round track is being used. (i.e. minimize line source emission & Fuel Conservation).
- 3. For Coal transportation through Roads: Tarpaulin covered trucks/dumpers are being following (To minimize Secondary /Tertiary fugitive dust emission.
- 4. Optimal Usage of Combustion support or Auxiliary fuels i.e LDO/HFO (lower per MW Liquid fuel cost)
- 5. Optimization of Coal Inventory level.
- 6. Reuse & recycle of waste water (Boiler, CT Blow down & DM Plant for ash handling purpose (Reducing demand for fresh raw water).
- 7. 100% of the Fly Ash Generation from plant operation is being utilized by dispatching to Cement Industry, Brick Manufactures & for Road Construction work (Ash Dyke storage optimization)
- 8. Use of Low NOx Burner in furnace (Energy Conservation)
- 9. All the major Drives are VFD (Energy Conservation)
- 10. Dust extraction systems are provided & operation to minimize coal dust losses through fugitive dust emission.
- 11. As on date Greenbelt development is covered with **274Ha**. (33%) of total plant area, with **3,80,330 nos**. of plants of various species.

PART-H

Additional measures investment proposal for environmental protection including abetment of pollution prevention of pollution.

Real time data display in Main Gate as well as Website.

Installation & Operation Continuous Stack Emission monitoring system.

Installation & Operation Continuous Ambient Air Quality monitoring system.

Installation & Operation Continuous waste water analyzer system

New plantation with Casualty replacement of previous plantation to be done during FY 2018-19.

PART-I Miscellaneous

Any other particulars for improving environment protection and abatement of pollution.

- 1. High efficiency ESP + Hybrid Fabric Filter combination, with 99.7% efficiency has installed for each Unit (600MW)
- 2. Zero water discharge system has been implemented. Effluents are being used in Ash Handling, Dust Suppression, DM water Production & Green belt development purposes.
- 3. Development of Greenbelt, ranging 50 to 100m width, by using Local Climate suitable Fast growing plant species.
- 4. Pulse Jet type bag –filters have been installed at all the Transfer-points meant for Coal transport from CHP area to boiler area.-
- 5. Water sprinkling arrangement facilitate at all the dust prone areas including Coal yard area.
- 6. 44 No's Rain Gun type of Water spray system has been installed at Coal yard area.
- 7. Installation of bag filters & Dry Fog System over the Coal conveyor Transfer Towers.
- 8. All the major internal roads are concretized and adequate capacity of water tankers has been deployed for water spraying to control fugitive dust emission.
- 9. Regular sweeping of roads are also in practiced.
- 10. Necklace drains provided in and around the Coal yard and other area to prevent leachate water.

ANNEXURE - I

WATER CESS RETURN DETAILS FOR FY 2017-18

Co	onsumption o	of Raw Wate	er (KL)	Reuse/Recycling of waste water (KL)			
	Catego	ory 1	Category 2	Categor	y 4		
Month	Cooling	a 11		ETP Clarifier plus			
Month	Tower Bolle	Boiler Water	Portable	RO+UF Circuit for	Ash Handling	STP	
				DM Water Production	_		
Apr-17	1435509	9 0 18693 57183		57183	38322	10530	
May-17	945045	0	23142	121245	41896	11595	
Jun-17	1427687	0	21530	65118	173123	11455	
Jul-17	1038400	0	19986	70064	37260	5150	
Aug-17	993394	0	18357	43653	45937	7050	
Sep-17	938194	938194 0 16456 51725		48862	5600		
Oct-17	1064216	0	17678	67001	76339	6300	
Nov-17	975240	0	17003	71120	131069	7275	
Dec-17	1050114	0	19566	20819	149490	6950	
Jan-18	1232656	0	19426	94697	72844	7070	
Feb-18	533059	0	17889	21901	42687	6170	
Mar-18	847957	0	20853	43350	11270	10425	
Total	12481471	0	230579	727876	869099	95570	

ANNEXURE - II

POWER GENERATION AND COAL CONSUMPTION DETAILS FOR FY 2017-18

Month	Month wise (Generation D		Month wise Coal Consumption Detail's (MT)				
	Unit # 3	Unit # 4	Unit # 3	Unit # 4			
Apr-17	363	351	200209	199576			
May-17	188	224	111126	136317			
Jun-17	309	370	185412	224819			
Jul-17	216	303	131559	194877			
Aug-17	271	231	171927	154896			
Sep-17	293	191	174988	119855			
Oct-17	300	252	170120	150454			
Nov-17	128	317	75606	197842			
Dec-17	161	238	104090	152674			
Jan-18	235	286	142458	180959			
Feb-18	36	179	22549	110295			
Mar-18	70	134	64266	115651			
Total	2569	3076	1554310	1938215			

ANNEXURE - III

			FLY AS	H GENERA	TION & U	ΓILISATIC	N DETAIL	S FOR FY	2017-18			
Month	Fly A	Fly Ash Generation (MT)			Fly Ash Utilized- Dispatched to Cement Plant. (MT)			Fly Ash Utilized for other purpose (MT)			Percentage of Utilization (%)	
Units	Unit#3	Unit#4	Unit#2	Unit#3	Unit#4	Unit#2	Unit#3	Unit#4	Unit#2	Unit#3 (5th Yr. operation)	Unit#4 (4 th Yr. operation)	Unit#2 (1st Yr. operation)
Apr-17	61361	61167	0	61361	54977	0	0	1511	0	100%	92%	0
May-17	34977	42906	0	34977	28581	0	0	1323	0	100%	70%	0
Jun-17	60626	73512	0	60626	12493	0	0	977	0	100%	18%	0
Jul-17	43394	64280	0	43394	43251	0	0	1735	0	100%	70%	0
Aug-17	57592	51610	0	57592	21822	0	0	3092	0	100%	48%	0
Sep-17	55584	38454	0	55584	28813	0	0	2474	0	100%	81%	0
Oct-17	56626	50801	0	56626	46597	0	0	1571	0	100%	95%	0
Nov-17	25890	68329	0	25890	66588	0	0	1741	0	100%	100%	0
Dec-17	37809	55678	0	37809	53536		0	2142	0	100%	100%	0
Jan-18	49204	62531	11208	49204	62531	5828	0	9800	0	100%	116%	52
Feb-18	7679	36626	0	7679	36013	0	0	613	0	100%	100%	0
Mar-18	20853	29455	14186	20853	28451	6307	0	1004	1353	100%	100%	54
Total	511596	635348	25394	511596	483652	12135	0	27983	1353	100%	83%	53%

ANNEXURE - IV

DATA OF INDUSTRIAL EFFLUENT (Guard Pond) from APRIL 2017 - MARCH 2018

Month	рН	Total Suspended solids mg/l	Oil & Grease mg/l
Apr-17	7.9	57	<1.0
May-17	7.8	46	<1.0
Jun-17	8.1	53	<1.0
Jul-17	7.9	63	<1.0
Aug-17	7.8	58	<1.0
Sep-17	7.9	66	<1.0
Oct-17	7.8	51	<1.0
Nov-17	7.9	47	<1.0
Dec-17	7.6	53	<1.0
Jan-18	7.2	49	<1.0
Feb-18	8.0	37	<1.0
Mar-18	7.9	42	<1.0

ANNEXURE - V

Monthly Source Emissions (Unit # 3) from April 2017- March 2018

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm ³)	NOx (mg/Nm³)
Apr-17	29.7	774	398
May-17	27.2	873	351
Jun-17	29.5	851	326
Jul-17	38.6	870	315
Aug-17	30.2	507	478
Sep-17	34.1	563	475
Oct-17	36.1	547	452
Nov-17	34.6	525	431
Dec-17	35.3	506	394
Jan-18	38.2	543	411
Feb-18	37.0	526	392
Mar-18	35.5	585	401

ANNEXURE - V(A)

Monthly Source Emissions (Unit#4) from April 2017 - March 2018

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm ³)	NOx (mg/Nm³)
Apr-17	32.4	864	403
May-17	30.1	904	373
Jun-17	31.6	887	360
Jul-17	33.4	793	332
Aug-17	31.1	533	652
Sep-17	37.2	618	525
Oct-17	33.8	583	497
Nov-17	35.2	560	452
Dec-17	37.4	602	424
Jan-18	35.7	524	373
Feb-18	39.2	580	421
Mar-18	37.0	541	375

Monthly Source Emissions (Unit # 2) from April 2017- March 2018

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm ³)	NOx (mg/Nm³)	Remarks
Jan-18	12.3	533	652	
Feb-18	Nil	Nil	Nil	Shutdown
Mar-18	13.1	618	525	

Annexure-VI

SUMMARY OF AMBIENT AIR QUALITY RESULTS FROM APRIL 2017 TO MARCH 2018

Inside Location:

1. BTG Area

	PM	12.5			PM	110			1	SO ₂			N	lOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
37.8	27.8	33.2	35.3	70.5	57.4	65.0	67.7	18.4	10.2	14.4	15.9	22.8	13.6	17.6	19.2

	C	Co			Ars	enic			Ni	ckel			Le	ead	
Max	Min	Avg	98%	Max	Max Min Avg 98%				Min	Avg	98%	Max	Min	Avg	98%
304	171	234.3	276.9	< 0.001	< 0.001	< 0.001	< 0.001	0.5	< 0.1	0.2083	0.35	0.006	< 0.001	0.0026	0.0043

	()3			N	H			C6	Н6			Be	nzo			Н	g	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max Min Avg 98%			Max	Min	Avg	98%	Max	Min	Avg	98%	
16.4	6.8	11.4	15.0	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.00	< 0.00	< 0.00	<0.00

(All Values are expressed in µg/m³)

2. CHP Area

	PM	12.5			PM	110				SO ₂			N	NOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
40.8	32.3	36.1	38.0	72.8	60.4	66.7	69.4	19.7	12	15.5	16.9	24.7	15.4	19.2	20.8

	C	0			Ars	enic			N	lickel				Lead	
Max	Min	Avg	98%	Max Min Avg 98%				Max	Min	Avg	98%	Max	Min	Avg	98%
337	184	257	302	< 0.001	< 0.001	< 0.001	< 0.001	0.7	0.2	0.316667	0.5	0.007	0.001	0.003167	0.00525

		03			N	H			C6	Н6			Bei	nzo			Н	Ig	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
17.2	6.5	11.6	15.075	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	<0.00	< 0.00	<0.00	<0.00

(All Values are expressed in µg/m³)

3. DM Plant

	PM	12.5			PN	110				SO_2			ľ	NOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
37.8	27.8	33.2	35.3	70.5	57.4	65.0	67.7	18.4	10.2	14.4	15.9	22.8	13.6	17.6	19.2

	C	0			Arso	enic			ľ	Vickel			Le	ad	
Max	Min	Avg	98%	Max Min Avg 98%				Max	Min	Avg	98%	Max	Min	Avg	98%
285	160	220	261	< 0.001	< 0.001	< 0.001	< 0.001	0.4	< 0.1	0.208333	0.275	0.004	< 0.001	0.002	0.0035

	(\mathbf{O}_3			N	H			C6	Н6			Be	nzo			ŀ	Ig	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%				98%
16.2	6.3	11.0	14.3	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.00	< 0.00	< 0.00	< 0.00

(All Values are expressed in $\mu g/m^3$)

4. Ash Silo Area

	PN	12.5			PN	110				SO ₂			N	NOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
37.8	27.8	33.2	35.3	70.5	57.4	65.0	67.7	18.4	10.2	14.4	15.9	22.8	13.6	17.6	19.2

	C	:0			Ars	enic			N	ickel			Le	ad	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min						98%
336	178	245	289	< 0.001	< 0.001	< 0.001	< 0.001	0.5	0.1	0.2	0.4	0.006	0.001	0.003	0.004

	(\mathbf{D}_3			N	H			C6	Н6			Be	nzo			Н	lg	
Max	Min	Avg	98%	Max				Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
16.5	6.5	11.3	14.8	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.001	< 0.001	< 0.001	< 0.001

(All Values are expressed in $\mu g/m^3$)

ANNETURE - VI (A)

SUMMARY FOR AMBIENT AIR QUALITY MONITORING RESULTS FROM APRIL 2017 TO MARCH 2018

Out Side of Plant Area:

1. Tarod village

	PN	12.5			PN	1 ₁₀				SO ₂			l	VOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
29.5	20.2	24.8	26.4	61.5	49.5	55.0	57.6	16.0	10.7	13.0	14.3	18.1	12.2	15.4	16.6

	С	0			Arso	enic			Ni	ickel			Lea	ıd	
Max	Min	Avg	98%	Max	Min	Min Avg 98% Max Min Avg 98% Max						Max	Min	Avg	98%
264	115	195	236	< 0.001	< 0.001	< 0.001	< 0.001	<0.1	<0.1	<0.1	<0.1	0.004	< 0.001	0.002	0.002

	0	3			NI	H			C6	Н6			Ber	1ZO			Н	g	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg					Min	Avg	98%		
14.6	5.4	10.3	13.3	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.001	< 0.001	< 0.001	< 0.001

(All Values are expressed in $\mu g/m^3$)

2. Jhalmala Village

	PN	1 _{2.5}			PN	1 ₁₀				SO ₂			l	VOx	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
29.4	19.2	23.9	25.4	57.4	47.2	52.3	54.3	14.5	10.5	12.2	13.2	16.8	21.1	14.5	15.6

	C	0			Arse	enic			Nic	kel			Le	ad	
Max	Min	Avg	98%	Max	Min Avg 98% Max Min Avg 98% Max Min Avg 98%						98%				
273	135	206	245	< 0.001	< 0.001	< 0.001	< 0.001	< 0.1	< 0.1	< 0.1	< 0.1	< 0.001	< 0.001	< 0.001	< 0.001

		0_3			N	H			C6	Н6			Be	nzo			H	Ig	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
14.3	5.1	10.2	13.2	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	< 0.001	< 0.001

(All Values are expressed in $\mu g/m^3$)

3. Amora village

	PM	I 2.5			PM	10				SO ₂				Nox	
Max						98%	Max	Min	Avg	98%	Max	Min	Avg	98%	
27.6	20.1	23.5	25.3	62.1	46.8	54.3	56.4	15.9	10.3	13.1	14.3	18.1	13.2	15.5	16.5

	C	Co			Arso	enic			Nic	kel			Le	ad	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min Avg 98% Max Min Avg 98%				98%		
265	132	201	243	< 0.001	< 0.001	< 0.001	< 0.001	<0.1	<0.1	<0.1	<0.1	< 0.001	< 0.001	< 0.001	< 0.001

	\mathbf{O}_3				NH				С6Н6				Benzo				Hg			
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	
14.1	5.2	10.1	13.1	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.001	< 0.001	< 0.001	< 0.001	

(All Values are expressed in $\mu g/m^3$)

4. Sonsari village

	PM	I _{2.5}			PN	1 ₁₀				SO ₂	NOx				
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
28.4	19.1	23.0	25.0	60.5	49.1	54.9	57.2	14.8	9.5	12.49167	13.575	17.9	12.8	15.1	16.1

		Со			Ars	enic			Nic	kel		Lead				
Max	Max Min Avg 98%		Max	Min	Avg	98%	Max	Min	Avg 98%		Max	Min	Avg 98%			
271	126	202	242	< 0.001	< 0.001	< 0.001	< 0.001	< 0.1	<0.1	< 0.1	< 0.1	< 0.001	< 0.001	< 0.001	< 0.001	

	0		NH				С6Н6				Benzo				Hg				
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
14.8	5.1	10.2	12.9	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.001	< 0.001	< 0.001	< 0.001

(All Values are expressed in $\mu g/m^3$)

5. Nariyara village

	PI	M _{2.5}			PI	M ₁₀				SO ₂		NOx				
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	
28.4	18.7	23.9	25.6	59.4	48.1	53.7	55.9	15.3	10.4	12.3	13.4	17.4	12.9	15.0	16.0	

		Со			Ars	Nickel				Lead					
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
258	143	199	240	< 0.001	< 0.001	< 0.001	< 0.001	<0.1	<0.1	<0.1	<0.1	< 0.001	< 0.001	< 0.001	< 0.001

	(NH				С6Н6				Benzo				Hg					
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
15.1	5.2	10.1	13.3	<20	<20	<20	<20	< 0.01	< 0.01	< 0.01	< 0.01	<1.0	<1.0	<1.0	<1.0	< 0.001	< 0.001	< 0.001	< 0.001

(All Values are expressed in $\mu g/m^3$